Sampling Strategies for the Assessment of Ecological Diversity

Lorenzo Fattorini

Dipartimento di Economia Politica
Università di Siena,P.za S. Francesco 8, 53100 Siena (Italy)
fattorini@unisi.it

ISSUES

- ECOLOGICAL DIVERSITY QUANTIFICATION

ISSUES

- ECOLOGICAL DIVERSITY QUANTIFICATION
- ESTIMATION OF DIVERSITY INDEXES

ECOLOGICAL DIVERSITY QUANTIFICATION

ECOLOGICAL DIVERSITY (??)

- a formal definition is still lacking

ECOLOGICAL DIVERSITY (??)

- a formal definition is still lacking
- traditionally ED relies on the apportionment of abundance (or related quantities such as biomass or coverage) into the animal or plant species forming the ecological community under study (Patil and Taille, 1982)

ECOLOGICAL COMMUNITY (??)

all the organisms in a delineated study area belonging to a taxonomic group of level higher than species (taxocene, Pielou, 1977, p.269)

ECOLOGICAL COMMUNITY (??)

all the organisms in a delineated study area belonging to a taxonomic group of level higher than species (taxocene, Pielou, 1977, p.269)
e.g.
ecological diversity of the snakes in a delineated tropical area ecological diversity of the trees in a nature reserve

QUANTIFICATION OF DIVERSITY BY INDEXES

(evenness, dominance and rarity of species)

huge literature

detailed reviews :
Dennis et al, 1979, Magurran, 1988, Frosini, 2003

> a relevant contribution

Patil and Taille (1979, 1982) - average rarity diversity indexes

NOTATIONS

A size of the study area
N number of individuals in the community (total abundance)
k number of species in the community (species richness)
$N_{l} \quad$ number of individuals (abundance) of species $\boldsymbol{l}(l=1, \ldots, k)$
$p_{l}=N_{l} / N$ relative abundance of species $l(l=1, \ldots, k)$

$$
\begin{gathered}
\mathbf{N}=\left[N_{1}, \ldots, N_{k}\right]^{\mathrm{T}} \quad \text { abundance vector } \\
\mathbf{p}=\left[p_{1}, \ldots, p_{k}\right]^{\mathrm{T}}=\mathbf{N} /\left(\mathbf{1}^{\mathrm{T}} \mathbf{N}\right) \text { relative abundance vector }
\end{gathered}
$$

AVERAGE RARITY DIVERSITY INDEXES

- a community is diverse when there is a large number of rare species (Patil and Taille, 1979,1982)
$R(p) \quad$ rarity of a species depending on its relative abundance

$$
\Delta=\sum_{l=1}^{k} p_{l} R\left(p_{l}\right)
$$

$R(p)=-\ln p \quad$ (Shannon index)
$R(p)=1-p \quad$ (Simpson index)

ESTIMATION OF DIVERSITY INDEXES

ABUNDANCE ESTIMATION

$$
\Delta=\Delta(\mathbf{p}) \Rightarrow \Delta=\Delta(\mathbf{N})
$$

- knowledge of Δ requires knowledge of \mathbf{N}

ABUNDANCE ESTIMATION

$$
\Delta=\Delta(\mathbf{p}) \Rightarrow \Delta=\Delta(\mathbf{N})
$$

- knowledge of Δ requires knowledge of \mathbf{N}
- knowledge of \mathbf{N} requires a census of the ecological community

ABUNDANCE ESTIMATION

$$
\Delta=\Delta(\mathbf{p}) \Rightarrow \Delta=\Delta(\mathbf{N})
$$

- knowledge of Δ requires knowledge of \mathbf{N}
- knowledge of \mathbf{N} requires a census of the ecological community

\mathbf{N} is unknown and must be estimated to estimate Δ

$$
\hat{\Delta}=\Delta(\hat{\mathbf{N}})
$$

SIMPLE RANDOM SAMPLING (with replacement)

- most papers devoted to estimation of diversity indexes are based on the assumption that individuals are selected from the community by means of simple random sampling with replacement

SIMPLE RANDOM SAMPLING (with replacement)

- most papers devoted to estimation of diversity indexes are based on the assumption that individuals are selected from the community by means of simple random sampling with replacement
n number of independent drawings
x_{l} number of sampled individuals of species \boldsymbol{l}

$$
\mathbf{x}=\left[x_{1}, \ldots, x_{k}\right]^{\mathrm{T}}
$$

$\hat{\mathbf{p}}=\mathbf{x} / n \quad$ best estimator for \mathbf{p}
Good (1953), Blyth (1958), Basharin (1959), ..., Baczkowsky et al (2000), Chao and Shen (2003)

ANIMALS, PLANTS CANNOT BE SELECTED FROM COMMUNITIES JUST LIKE BALLS FROM AN URN !!!

- Pielou (1966)
- Heyer and Berven (1973)
- Zahl (1977)
- Heltshe and Bitz (1979)
- Heltshe and Forrester (1983)
- Gove et al (1994)
more recently
- Sterbaa (2008), Motza, Sterbaa e Pommereningb (2010), Ramezani, Holm, Allard e Ståhl (2010)
theoretical results of general validity are lacking
theoretical results of general validity are lacking
Barabesi and Fattorini (1998) give general results on the estimation of diversity indexes when abundance is estimated by means of plots, points or transects
theoretical results of general validity are lacking
Barabesi and Fattorini (1998) give general results on the estimation of diversity indexes when abundance is estimated by means of plots, points or transects

DESIGN-BASED INFERENCE
theoretical results of general validity are lacking
Barabesi and Fattorini (1998) give general results on the estimation of diversity indexes when abundance is estimated by means of plots, points or transects

DESIGN-BASED INFERENCE

- no assumptions about the population under study
theoretical results of general validity are lacking
Barabesi and Fattorini (1998) give general results on the estimation of diversity indexes when abundance is estimated by means of plots, points or transects

DESIGN-BASED INFERENCE

- no assumptions about the population under study
- "Design-based inference is objective, nobody can challenge that the sample was really selected according to the given sampling design. The probability distribution associated with the design is real, not modelled or assumed" Sarndal et al (1992)

SAMPLING ECOLOGICAL COMMUNITIES

- an ecological community on a delineated study area constitutes a without-frame population of N organisms spread over the area

SAMPLING ECOLOGICAL COMMUNITIES

- an ecological community on a delineated study area constitutes a without-frame population of \boldsymbol{N} organisms spread over the area
- owing to the lack of frame, the most effective schemes for sampling ecological populations differ from the traditional ones

SAMPLING ECOLOGICAL COMMUNITIES

- an ecological community on a delineated study area constitutes a without-frame population of \boldsymbol{N} organisms spread over the area
- owing to the lack of frame, the most effective schemes for sampling ecological populations differ from the traditional ones
- their choice is mainly determined by practical considerations on the nature of the community to be sampled

ENVIRONMENTAL SCHEMES

the selected units are those encountered from points or within plots or along transects randomly thrown onto the study area

ENVIRONMENTAL SCHEMES

the selected units are those encountered from points or within plots or along transects randomly thrown onto the study area
tree communities
plot sampling, Bitterlich sampling

ENVIRONMENTAL SCHEMES

the selected units are those encountered from points or within plots or along transects randomly thrown onto the study area
tree communities
shrub communities
plot sampling, Bitterlich sampling
line intercept sampling

ENVIRONMENTAL SCHEMES

the selected units are those encountered from points or within plots or along transects randomly thrown onto the study area
tree communities
shrub communities
animal population
plot sampling, Bitterlich sampling
line intercept sampling
line transect sampling , point transect sampling (problems related to the elusive behaviour of animals)

ENVIRONMENTAL SCHEMES

the selected units are those encountered from points or within plots or along transects randomly thrown onto the study area
tree communities
shrub communities
animal population
plot sampling, Bitterlich sampling
line intercept sampling
line transect sampling, point transect sampling (problems related to the elusive behaviour of animals)

De Vries (1986), Thompson (1992), Schreuder et al. (1993), Overton and Stehman (1995)
$\mathrm{U}=\{1,2, \ldots, N\} \quad$ population of N units
$S \subset U$
sample
$\mathrm{U}=\{1,2, \ldots, N\} \quad$ population of N units

$$
S \subset U \quad \text { sample }
$$

- when the population frame is available, the inclusion probabilities are known in advance
$\mathrm{U}=\{1,2, \ldots, N\} \quad$ population of N units
$S \subset U \quad$ sample
- when the population frame is available, the inclusion probabilities are known in advance
- the encounter schemes must be strictly ruled to determine (directly or by field measurements) the first-order inclusion probabilities at least for the selected units (computation of the Horvitz-Thompson estimate)

PLOT SAMPLING

a point is randomly thrown onto the study area and the selected units are those included in a circular or square plot of a pre-fixed size a centered at the sample point

- all the inner units have first-order inclusion probability $\pi_{j}=a / \mathrm{A}$
- edge effects can be removed by suitable modifications of the sampling scheme (e.g. Gregoire and Valentine, 2008).

PLOT SAMPLING

a point is randomly thrown onto the study area and the selected units are those included in a circular or square plot of a pre-fixed size a centered at the sample point

- all the inner units have first-order inclusion probability $\pi_{j}=a / \mathrm{A}$
- edge effects can be removed by suitable modifications of the sampling scheme (e.g. Gregoire and Valentine, 2008).

PLOT SAMPLING

a point is randomly thrown onto the study area and the selected units are those included in a circular or square plot of a pre-fixed size a centered at the sample point

- all the inner units have first-order inclusion probability $\pi_{j}=a / \mathrm{A}$
- edge effects can be removed by suitable modifications of the sampling scheme (e.g. Gregoire and Valentine, 2008).

PLOT SAMPLING

a point is randomly thrown onto the study area and the selected units are those included in a circular or square plot of a pre-fixed size a centered at the sample point

- all the inner units have first-order inclusion probability $\pi_{j}=a / \mathrm{A}$
- edge effects can be removed by suitable modifications of the sampling scheme (e.g. Gregoire and Valentine, 2008).

BITTERLICH SAMPLING (variable circular plot sampling)

a point is randomly thrown onto the study area and a tree is selected if its bole at breast high subtends an angle greater than a pre-fixed angle onto the point

- the first order inclusion probability of each tree is proportional to the bole area at breast height (which can be readily determined in the field by measuring the bole circumference)

BITTERLICH SAMPLING (variable circular plot sampling)

a point is randomly thrown onto the study area and a tree is selected if its bole at breast high subtends an angle greater than a pre-fixed angle onto the point

- the first order inclusion probability of each tree is proportional to the bole area at breast height (which can be readily determined in the field by measuring the bole circumference)

BITTERLICH SAMPLING
 (variable circular plot sampling)

a point is randomly thrown onto the study area and a tree is selected if its bole at breast high subtends an angle greater than a pre-fixed angle onto the point

- the first order inclusion probability of each tree is proportional to the bole area at breast height (which can be readily determined in the field by measuring the bole circumference)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE INTERCEPT SAMPLING (fixed direction)

a transect of fixed direction is randomly thrown onto the baseline and the selected units are those intercepted by the transect

- the inclusion probability of a unit is the ratio of the length of the shadow cast by the unit onto the baseline to the baseline length (e.g. Thompson, 2002)

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

LINE TRANSECT SAMPLING

a line or a point is randomly thrown onto the area and the selected units are those spotted from it

- the inclusion probabilities are evaluated on the basis of some simplifying assumptions adopted to model the sighting process (Buckland et al, 1993)
- inference cannot be considered entirely design-based

HORVITZ-THOMPSON ESTIMATION

S sample of animals or plants selected from a point, plot or transect
$S_{1} \quad$ sample of units from species 1
$S_{k} \quad$ sample of units from species k
$\pi_{j} \quad$ inclusion probability (known for each selected unit)
$\hat{N}_{l}=\sum_{j \in \mathrm{~S}_{l}} \frac{1}{\pi_{j}}$ HT estimator of abundance of species l
$\hat{N}_{l}=0$ if $\mathrm{S}_{1}=\varnothing$ (lost species)

VARIANCE ESTIMATION PROBLEMS

$$
\hat{\mathbf{N}}=\left[\hat{N}_{1}, \ldots, \hat{N}_{k}\right]^{\mathrm{T}} \quad \text { vector of abundance estimator }
$$

VARIANCE ESTIMATION PROBLEMS

$\hat{\mathbf{N}}=\left[\hat{N}_{1}, \ldots, \hat{N}_{k}\right]^{\mathrm{T}} \quad$ vector of abundance estimator
$\hat{\mathbf{N}}$ unbiased

VARIANCE ESTIMATION PROBLEMS

$\hat{\mathbf{N}}=\left[\hat{N}_{1}, \ldots, \hat{N}_{k}\right]^{\mathrm{T}} \quad$ vector of abundance estimator
$\hat{\mathbf{N}}$ unbiased
$V(\hat{\mathbf{N}})=\boldsymbol{\Sigma}$

VARIANCE ESTIMATION PROBLEMS

$\hat{\mathbf{N}}=\left[\hat{N}_{1}, \ldots, \hat{N}_{k}\right]^{\mathrm{T}} \quad$ vector of abundance estimator
$\hat{\mathbf{N}}$ unbiased
$V(\hat{\mathbf{N}})=\boldsymbol{\Sigma}$

- Σ depends on the sampling scheme as well as on the characteristics of the ecological community (spatial distribution of the individuals over the study area)

VARIANCE ESTIMATION PROBLEMS

$\hat{\mathbf{N}}=\left[\hat{N}_{1}, \ldots, \hat{N}_{k}\right]^{\mathrm{T}} \quad$ vector of abundance estimator
$\hat{\mathbf{N}}$ unbiased
$V(\hat{\mathbf{N}})=\boldsymbol{\Sigma}$

- Σ depends on the sampling scheme as well as on the characteristics of the ecological community (spatial distribution of the individuals over the study area)
- Σ cannot be unbiasedly estimated by a unique sample S

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

REPLICATIONS

- a study area cannot be adequately sampled using one plot or one line or one point only
the sampling scheme is independently replicated n times (n plots, lines or n points randomly and independently thrown onto the study area)

n replications $=\boldsymbol{n}$ samples
n estimates $\quad \hat{\mathbf{N}}_{1}, \ldots, \hat{\mathbf{N}}_{n}$
arithmetic mean

$$
\hat{\mathbf{N}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{N}}_{i}
$$

Central Limit Theorem: as \boldsymbol{n} increases $\hat{\mathbf{N}}_{n}$ converges to \mathbf{N}

$$
\hat{\mathbf{N}}_{n} \rightarrow \mathbf{N}
$$

GENERAL RESULTS

$$
\Delta\left(N_{1}, \ldots, N_{k}\right)=\Delta\left(N_{1}, \ldots, N_{k}, 0, \ldots, 0\right)
$$

- estimation does not require the knowledge of \boldsymbol{k} since the missing species may be ignored when computing $\hat{\Delta}_{n}=\Delta\left(\hat{\mathbf{N}}_{n}\right)$

GENERAL RESULTS

$$
\Delta\left(N_{1}, \ldots, N_{k}\right)=\Delta\left(N_{1}, \ldots, N_{k}, 0, \ldots, 0\right)
$$

- estimation does not require the knowledge of k since the missing species may be ignored when computing $\hat{\Delta}_{n}=\Delta\left(\hat{\mathbf{N}}_{n}\right)$
- Delta Method: if $\hat{\mathbf{N}}_{n} \rightarrow \mathbf{N}$ then

$$
\hat{\Delta}_{n}=\Delta\left(\hat{\mathbf{N}}_{n}\right) \rightarrow \Delta
$$

JACKKNIFE (deleting one replication at time)

- $\hat{\Delta}_{n}$ is asymptotically unbiased but a bias occurs for finite samples and decreases with n
standard results on jackknife (Shao and Tu, 1995):

$$
\hat{\Delta}_{\text {jack }} \quad v_{\text {jack }}^{2}
$$

- the bias of $\hat{\Delta}_{\text {jack }}$ decreases with $n^{2}!!$

$$
\hat{\Delta}_{\text {jack }} \pm 2 v_{\text {jack }} \quad \mathbf{9 5 \%} \mathbf{~ c i}
$$

these results hold for the most familiar diversity indexes

Fattorini, Giordano, Marcheselli, Meriggi
 (Environmetrics 2011)

diversity of avian community settled in short rotation forestry vs traditional crops (Shannon index)

Site	SRF(ha)	R	SH	SE	Crops (ha)	R	SH	SE
1	6.13	7	1.19	26%	361.59	21	2.67	11%
2	61.45	7	2.41	12%	100.97	15	1.95	29%
3	52.47	10	2.43	5%	460.39	17	1.91	17%
4	64.22	9	2.83	8%	277.02	11	2.18	17%

Fattorini, Giordano, Marcheselli, Meriggi
 (Environmetrics 2011)

diversity of avian community settled in short rotation forestry vs traditional crops (Shannon index)

Site	SRF(ha)	R	SH	SE	Crops (ha)	R	SH	SE
1	6.13	7	1.19	26%	361.59	21	2.67	11%
2	61.45	7	2.41	12%	100.97	15	1.95	29%
3	52.47	10	2.43	5%	460.39	17	1.91	17%
4	64.22	9	2.83	8%	277.02	11	2.18	17%

Fattorini, Giordano, Marcheselli, Meriggi (Environmetrics 2011)

diversity of avian community settled in short rotation forestry vs traditional crops (Shannon index)

Site	SRF(ha)	R	SH	SE	Crops (ha)	R	SH	SE
1	6.13	7	1.19	26%	361.59	21	2.67	11%
2	61.45	7	2.41	12%	100.97	15	1.95	29%
3	52.47	10	2.43	5%	460.39	17	1.91	17%
4	64.22	9	2.83	8%	277.02	11	2.18	17%

Fattorini, Giordano, Marcheselli, Meriggi (Environmetrics 2011)

diversity of avian community settled in short rotation forestry vs traditional crops (Shannon index)

Site	SRF(ha)	R	SH	SE	Crops (ha)	R	SH	SE
1	6.13	7	1.19	26%	361.59	21	2.67	11%
2	61.45	7	2.41	12%	100.97	15	1.95	29%
3	52.47	10	2.43	5%	460.39	17	1.91	17%
4	64.22	9	2.83	8%	277.02	11	2.18	17%

Fattorini, Giordano, Marcheselli, Meriggi (Environmetrics 2011)

diversity of avian community settled in short rotation forestry vs traditional crops (Shannon index)

Site	SRF(ha)	R	SH	SE	Crops (ha)	R	SH	SE
1	6.13	7	1.19	26%	361.59	21	2.67	11%
2	61.45	7	2.41	12%	100.97	15	1.95	29%
3	52.47	10	2.43	5%	460.39	17	1.91	17%
4	64.22	9	2.83	8%	277.02	11	2.18	17%

FUTURE DEVELOPMENTS - 1

- the complete random selection of n points, plots or transects over the study area (replications) gives rise to straightforward theoretical results but it is likely to produce unsuitable voids (undetected parts) in the study area

FUTURE DEVELOPMENTS - 1

- the complete random selection of n points, plots or transects over the study area (replications) gives rise to straightforward theoretical results but it is likely to produce unsuitable voids (undetected parts) in the study area
- more complex sampling schemes should be adopted in order to ensure a systematic search over the study area (e.g systematic grid sampling or tessellation stratified sampling \rightarrow pseudoreplications)

- the use of pseudo-replications instead of genuine replications requires more refined methodological tools, because the estimates derived from these plots, points or lines cannot be considered equally distributed and in the aligned case they are even dependent
extension to the diversity index estimation of the results by Barabesi (2003), Barabesi and Marcheselli (2005, 2008), Gregoire and Valentine (2008, Chap. 10), Mandallaz (2008, Sec 4.2), Barabesi and Franceschi (2011)

REFERENCES

Baczkowski A.J. Joanes D.N. and Shamia G.M. (2000) The distribution of a generalized diversity index due to Good, Environmental and Ecological Statistics, 7, 329-342.
Barabesi L. (2003) A Monte Carlo integration approach to Horvitz-Thompson estimation in replicated environmental designs, Metron, 61, 355-374.
Barabesi L and Fattorini L (1998) The use of replicated plot, line and point sampling for estimating species abundances and ecological diversity, Environmental and Ecological Statistics, 5, 353-370.
Barabesi L. and Marcheselli M. (2005) Some large-sample results on a modified Monte Carlo integration method, Journal of Statistical Planning and Inference 135, 420-432.
Barabesi, L and Marcheselli, M. (2008) Improved strategies for coverage estimation by using replicated line-intercept sampling, Environmental and Ecological Statistics 15,215-239.
Basharin G.P. (1959) On a statistical estimate for the entropy of a sequence of independent random variables Theory of Probability and its Applications, 4, 333-336.
Bishop J.A., Formby J.P. and Smith W.J. (1991) Lorenz dominance and welfare: changes in the U.S. distribution of income, 19671986, The Review of Economic and Statistics, 73, 134-139.
Blyth C.R. (1958) Note on estimating information, Annals of Mathematical Statistics, 30, 71-79.
Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. (1993) Distance sampling: estimating abundance of biological populations. Chapman and Hall, London.
Champely S and Chessel D. (2002) Measuring biological diversity using Euclidean metrics, Environmental and Ecological Statistics, 9, 167-177.
Chao A. and Shen T.J. (2003) Nonparametric estimation of Shannon's index of diversity when there are unseen species in the sample, Environmental and Ecological Statistics, 10, 429-443.
De Vries P.G. (1986) Sampling Theory for Forest Inventories, Springer-Verlag, Berlin.
Fattorini L. and Marcheselli M. (1999) Inference on intrinsic diversity profiles of biological populations, Environmetrics, 10, 589-599.
Frosini B.V. (2003) Descriptive measures of ecological diversity. In Environmetrics, A.H. El-Shaarawi and J. Jureckova (Eds.),
Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford (UK) (http://www.eolss.net).
Gove J.H., Patil G.P., Swindel B.F. and Taille C. (1994) Ecological diversity and forest management, In Handbook of Statistics, Vol 12 (Environmental Statistics), G.P. Patil and C.R. Rao (Eds.), Elsevier, Amsterdam, pp. 409-462.
Gregoire, T.G., and Valentine, H.T. (2008) Sampling Strategies for Natural Resources and the Environment. Chapman \& Hall, New York
Bitz D.V. (1979) Comparing diversity measures in sampled communities, In Ecological Diversity in Theory and Practice, J.F. Grassle, G.P. Patil, W. Smith and C. Taille (Eds.), International Co-operative Publishing House, Fairland (MD), 133-144.

Heltshe J.F. and Forrester N.E. (1983) Estimating diversity using quadrat sampling, Biometrics, 39, 1073-1076.
Heyer R.V. and Berven K.A. (1973) Species diversity of herpetofaunal samples from similar microhabitats at two tropical sites,
Ecology, 54, 642-645

Hurlbert S.H. (1971) The nonconcept of species diversity: a critique and alternative parameters, Ecology, 52, 577-586.
Izsak J. and Szeidl L.(2002) Quadratic diversity: its maximization can reduce the richness of species, Environmental and Ecological Statistics, 9,423-430.
Kaiser L.(1983) Unbiased estimation in line-intercept sampling, Biometrics, 39, 965-976.
Lau K.S. (1985) Characterization of Rao's quadratic entropies, Sankhya, A 47, 295-309.
Magurran AE (2004) Measuring biological diversity. Oxford, Blackwell
Marcheselli M. (2003) Asymptotic results in jackknifing nonsmooth functions of the sample mean vector, The Annals of Statistics,
31, 1885-1904.
Overton W.S. and Stehman S.V. (1995) The Horvitz-Thompson theorem as a unifying perspective for probability sampling with examples from natural resource sampling, The American Statistician, 49, 261-268.
Patil G.P. and Taille C. (1979) A study of diversity profiles and ordering for a bird community in the vicinity of Colstrip, Montana, in "Contemporary Quantitative Ecology and Related Econometrics", G.P. Patil and M. Rosenzweig (Eds.), International Co-operative Publishing House, Fairland (MD), 23-48.
Patil G.P. and Taille C. (1982) Diversity as a concept and its measurement, Journal of the American Statistical Association, 77, 548-567.
Pielou E.C. (1966) The measurement of diversity in different types of biological collections, Journal of Theoretical Biology, 13, 131-144.
Pielou E.C. (1977) Mathematical Ecology, Wiley, New York.
Rao C.R. (1982) Diversity and dissimilarity coefficients: a unified approach, Theoretical Population Biology, 21, 24-43.
Richmond J. (1982) A general method for constructing simultaneous confidence intervals, Journal of the American Statistical Association, 77, 455-460.
Särndal, C.E., Swensson, B., \& Wretman, J. (1992). Model Assisted Survey Sampling. Springer-Verlag, New York.
Schreuder H.T., Gregoire T.G. and Wood G. (1993) Sampling Methods for Multiresources Forest Inventories, Wiley, New York.
Solow A.R. and Polasky S. (1994) Measuring ecological diversity, Environmental and Ecological Statistics, 1, 95-107.
Thompson, S.K. (2002). Sampling.2nd edition, Wiley, New York
Zahl S. (1977) Jackknifing an index of diversity, Ecology, 58, 907-913.

